
Operating System on Microcontroller in Context of
Emulator

Sneha.M.L#1, Dr. Rohini Nagapadma*2
#1PG student, Department of E&E,

The National Institute of Engineering, Mysuru, India
*2Professor, Department of E&C,

The National Institute of Engineering, Mysuru, India

Abstract— A common question asked by most embedded
engineers is “can GNU/Linux run on a microcontroller?” The
answer to that is rather simple; it can be done with ease if we
have a paged memory management unit and a few megabytes
of main memory .There are quite a few methods, which can be
adopted, in order to run GNU/Linux on a microcontroller,
among which, the most advantageous method is picked by us.
The method used is to run GNU/Linux within the context of an

emulator.

Keywords— Emulation, Microcontroller, Abstraction Layer,
IoT, uCLinux, Linux, Boot loader, Booting.

I. INTRODUCTION

We live in an amazingly high-tech world, surrounded by
electronic gadgets, which are mainly controlled by
microcontrollers. The situation we find ourselves today in
the field of microcontrollers had its beginnings in the
development of technology of integrated circuits. This
development has enabled us to store hundreds of thousands
of transistors into one chip. That was a precondition for the
manufacture of microprocessors. The first computers were
made by adding external peripherals such as memory,
input/output lines, timers and others to it. Further increasing
of package density resulted in creating an integrated circuit
which contained both processor and peripherals. That is
how the first chip containing a microcomputer later known
as a microcontroller has developed. The reason we find
microcontrollers fascinating is that they have been and
continue to be such an important part of the electronics
industry. Over the past decade more microcontrollers have
been creeping into our daily lives. In today’s world,
microcontrollers are used in just about every electronic
object in the household and place of business. Just about the
only common object in the house that does not have a
microcontroller in it is the light bulb. In fifteen years or so
even that may not be the case. The reason microcontrollers
have become so common is that they are more than merely
reliable. By adding a small computer to any devices it is
possible to increase efficiency and safety. Timing devices
are now composed almost entirely of microcontrollers. This
has made them unbelievably accurate. They are also cheap,
and much more reliable. A digital watch today, which has
no moving parts, is almost impossible to break through
normal use. It is easy to adapt digital watches to extreme
environments such as the deep sea or vacuum. Telephones

and other personal communication devices also use
microcontrollers. With such devices it is possible to have
wireless telephones and cellular phones, each capable of
maintaining a connection between the phone unit and some
sort of base station. These phones can also encrypt data as it
leaves and decrypt it as it comes in. Televisions and stereos
use microcontrollers. Neither is the mess of tubes that was
synonymous with televisions and radios. As a result, both
produce better quality picture and sound, have more
features, and weigh less per unit volume. All kinds of
transportation system use microcontrollers. Cars use them
in fuel injection systems, brakes, airbags, and just about any
other piece of equipment. Airplanes are going to a “fly-by-
wire” control system. This is a complex computer interface
between the controls that the pilot uses and the control
surfaces of the plane. Such interfaces are controlled by
microcontrollers. Hence microcontrollers find a
predominant role in automobile and industrial applications.

There are wide verities of microcontrollers
available in the market today, for any application you
choose. The code written for one microcontroller cannot be
executed on any other microcontroller. In that case you
have two ways to deal with the situation i.e. you can either
make the code platform independent or see that your
microcontroller can execute any damn code you want it to
execute.

The former method just means that your
microcontroller should be capable enough to execute any
code you put on it. How is it possible that a microcontroller
will be capable enough to execute any program you put on
it? It is possible only if you can have a general purpose
operating system running on microcontroller.

How can one have a general purpose operating
system running on a microcontroller? Is it seriously
possible for a measly system as that of microcontroller to
run an operating system? There are quite a few methods,
which can be adopted, in order to run a general purpose
operating system on a microcontroller, among which, the
most advantageous method is to run operating system
within the context of an emulator. Emulation is what we do
when we try to make one system behave like or imitate a
different system.

The next question that arises is which operating system
to choose among wide verities of general purpose operating
system available? The major reason why operating systems
are not run on microcontroller is its memory constraint.
Hence we will have to choose the operating system wisely

Sneha.M.L et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1461-1465

www.ijcsit.com 1461

such that it occupies comparatively less memory. In the list
of operating systems Linux is the one which requires
comparatively less memory hence we land up with that. In
this project we will be running GNU/Linux version

II. RELATED WORK

[1] This article aims to revive Lisp programming
language for native, interactive and incremental
microcontroller (MCU) program development by running a
dialect of Lisp (PicoLisp) as virtual machine on the target.
This article basically gives information about the layers of
code involved before having an application code over the
microcontroller in the context of virtual machine. Many
interesting, practical embedded solutions have been
developed so far with such languages, supported as part of a
virtual machine (VM). Figure1 shows the system
architecture of a natively-programmable, digitally
controlled system.

Fig.1 General MCU software system with a VM layer

With the above architecture, it is possible to write abstract,
self-adapting, middle-level drivers for hardware modules on
the MCU. This enables the possibility of platform-
independent, native embedded software development.
The author also highlights that codebase can be
made portable across various platforms and architectures
simply by using the following key principles:

 Code that is platform-independent is common code
and should be written in portable ANSI C as much
as possible

 Code that is not generic (mostly peripheral and
CPU-specific code) must still be made as portable
as possible by using a common interface that must
be implemented by all platforms. This interface is
called platform interface.

 Platforms vary greatly in capabilities. The
platform interface tries to group only common
attributes of different platforms.

This article gives a fairly rough idea about how to
develop/adopt a virtual Machine to reach to emulate
GNU/Linux on a microcontroller.

[2] This book is Cluster of European Research
projects on the Internet of Things – CERP-IoT – comprises
around 30 major research initiatives, platforms and
networks working in the field of identification technologies,
such as Radio Frequency Identification and in what could
become tomorrow an Internet-connected and inter-
connected world of objects. This book basically reports to

you about the research and innovation issues at stake and
demonstrates approaches and examples of possible
solutions.

Closer look to this book will make you realise that
the Cluster reflects exactly the ongoing developments
towards a future Internet of Things – growing use of
Identification technologies, massive deployment of simple
and smart devices, increasing connection between objects
and systems.

[3] In this white paper author states that The Internet of
Things (IoT) is a novel paradigm that is rapidly gaining
ground in the scenario of modern wireless
telecommunications. Unquestionably, the main strength of
the IoT idea is the high impact it will have on several
aspects of everyday-life and behaviour of potential users.
From the point of view of a private user, the most obvious
effects of the IoT introduction will be visible in both
working and domestic fields. The basic idea of this concept
is the pervasive presence around us of a variety of things or
objects – such as Radio-Frequency Identification (RFID)
tags, sensors, actuators, mobile phones, etc. – which,
through unique addressing schemes, are able to interact
with each other and cooperate with their neighbours to
reach common goals.

As recently as five years ago, vehicles were merely a
means of transportation, but today cars have become the
ultimate connected device. By 2020, 90 percent of new cars
will be enabled through extensive connectivity platforms.
Automobiles that are increasingly intelligent are changing
the concept of mobility to consumer-driven preferences that
extend beyond the vehicle itself.

As the boundaries of the auto industry blur and as new
competitors enter the fray, the traditional industry
participants are learning to thrive despite technological
disruption. Electronics, telecommunications and insurance
companies as well as emerging start-ups are joining the race
to find new ways to attract and excite consumers to elevate
their experiences with cars.

Connectivity is just the first step in providing a new
experience. Many companies can enable connectivity, but
just how useful is connectivity without the ability to derive
new insight? Many opportunities remain untapped as
connectivity and the Internet of Things expands. The key
building block comes from volumes of data flowing from
one point to another. This data volume remains the most
pressing challenge for the auto industry: tapping into this
data, combining it with other information and uncovering
actionable insights through cloud operations and investment
in building new business models that generate value for
customers.

 By 2020, the connected car will be the top
connected application.

 In 2020, 250 million vehicles will be connected
and fully packed with sensor technologies.

 Connected vehicles will produce 350 MB of
data/second by 2020.

 One-third of consumer data will be stored in the
cloud by 2016.

 In-vehicle software will be updated over the air
through cloud connectivity.

 Application

 User Shell

 VM Layer

 Hardware

Sneha.M.L et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1461-1465

www.ijcsit.com 1462

Typically, a connected car made after 2010 has a head-
unit, in car entertainment unit, in-dash system with a screen
from which the operations of the connections can be seen or
managed by the driver. Types of functions that can be made
include music/audio playing, smartphone apps, navigation,
roadside assistance, voice commands, contextual
help/offers, parking apps, engine controls and car diagnosis
[4].

On January 6, 2014, Google announced the formation of
the Open Automotive Alliance (OAA) a global alliance of
technology and auto industry leaders committed to bringing
the Android platform to cars starting in 2014. The OAA
includes Audi, GM, Google, Honda, Hyundai and Nvidia
[5]. On March 3, 2014, Apple announced a new system to
connect iPhone 5/5c/5S to car infotainment units using iOS
7 to cars via a Lightning connector, called CarPlay Android
Auto was announced on June 25, 2014 to provide a way for
Android smartphones to connect to car infotainment
systems.

III. NEED FOR PLATFORM INDEPENDENCY

The present world of technology, demands for code to
be platform independent. As per the present day scenario
each microcontroller vendor have their own controller
architecture, which means program from another processor
vendor can’t be executed on our microcontroller, which
means it’s difficult for the controller users to switch from
one vendor to other. In order to meet the present day
demand of platform independency we have come up with a
simple and cost efficient solution. That is to have an
operating system on microcontroller.

IV. EXISTING AND PROPOSED SYSTEM

Any microcontrollers can (in theory) run an operating
system which can execute processes and not just threads but
they are generally used for application specific
requirements. So, most microcontrollers don't come with a
memory management unit (which is common for most
general purpose processors). The implication is that one
can't run GNU/Linux on a microcontroller directly.

To run GNU/Linux on microcontroller we have two
methods:

 Interface an SDRAM controller with the MCU (for
additional main memory) and modify the Linux
kernel to remove MMU specific attributes (like
what ucLinux does)

 Run GNU/Linux within the context of an emulator
for the target

In the first method mentioned above we will have to
modify Linux kernel, such a way that it is MMU
independent and not only that a severe restriction will be
imposed on the system software (e.g. a port of a system
program that invokes functions like `malloc' or `vfork').
One such kernel has all these modifications - uCLinux. In
the later one we will emulate OS on microcontroller.

The figure 2 represents the existing and proposed
system, the system excluding the emulation layer represents
the existing system the system inclusive of emulation layer
represents the proposed one. Addition of the emulation
layer provides us with platform independency. With that,
what one may have is a platform (any processor with the
emulator running on it) which can virtually execute any
program from another processor vendor. That simply means
that by introducing an emulator, we make programs
hardware agnostic.

Emulation is certainly slow but if the target
processor hosting the emulator is even two times faster the
resultant will still run at a satisfactory speed.

Fig .2 Layered architecture of the proposed and existing system

V. HARDWARE DESIGN DETAILS

As mentioned earlier operating system can be run with
ease on microcontroller if we have a paged memory
management unit and a few megabytes of main memory.
Not all microcontrollers have Megabytes of main memory
because microcontrollers are generally used for application
specific requirements. So, most microcontrollers don't come
with megabytes of memory. In such case what one can do is
interface the microcontroller with an external RAM, so that
system is provided with sufficient main memory that is
required. Not only that, system will also need an external
memory to store the operating system and support the
microcontroller when it starts booting. For this purpose
SD/MMC card can be used. The figure 3 shows how the
microcontroller can be interface with both these external
memory interfaces.

Fig.3 Interconnection of Microcontroller with SD-card and SDRAM

VI. SOFTWARE DESIGN DETAILS

The previous section gives brief description of Hardware
requirements of the system as mentioned earlier we will

 Application Layer

 Hardware abstraction layer

 Low Level Drivers

 Hardware

Emulator layer

SD Card

Microcontroller

 SDRAM

Sneha.M.L et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1461-1465

www.ijcsit.com 1463

have to interconnect microcontroller with two different
external memory units. In order to do that, other than
hardware connectivity between them we will have to
provide some means of communication protocol. Any kind
of serial communication protocol supported by the
microcontroller can be used to serve the purpose of
interaction between microcontroller and the SD-card. The
next problem that has to be dealt with is how to enable
communication between SDRAM and microcontroller, this
task becomes pretty much easy if we have an EBU
(External Bus Unit) on the microcontroller. If we don’t
have one the other way to deal with this is to have a boot
loader which will boot strap the content of the SD-card on
to the SDRAM. Once we have established proper
communication system between the microcontroller and
memory units we will have to think about how to have
paged memory system. This is very much required in order
to fetch the machine code placed on the SD-card.

To have a paged memory system, we will require a
file system layer. After development of file system layer the
next step is to develop a Hardware Abstraction Layer
(HAL), which will make my system, hardware agnostic.
With this it doesn’t end, after having all these LLD and
HAL we will need a Emulator layer, which will help us in
emulating, all the missing functionalities of microprocessor
on to our microcontroller (it may be Memory Management
Unit, number of bits it can process et..) after having all
these layers of software, we are ready to setup the system.
Figure 4 represents Interaction between different layers of
software.

Once we have all these layers of software and a
means to flash the code on to the microcontroller, it just
means that we can have Operating System running on
Microcontroller.

VII. USE CASE

Having an operating system on a microcontroller just
means you will be able to run any damn code on the
microcontroller. It just means that the microcontroller can
have internet access which means that the microcontroller is
capable of interacting with the server and other system
surrounding it.
It just means that the electronic instrument which is
equipped with this controller can interact with other system
without using any cable and it can access internet as well.
This plainly directs towards internet of things (IoT).

Fig .4 Interaction between Different Layers of Software

 The Internet of Things (IoT) is blurring traditional
industry boundaries. Automotive channel participants,
manufacturers, suppliers, customers, and even vehicles
themselves are at the heart of interactions between
designers and engineers, production lines, supply chains,
and sales and service organizations. With increasingly
sophisticated technology, businesses, vehicles, and
customers/drivers can now intersect to drive business and
personal value across all interaction points and channels,
including connected fuelling and convenience offers;
parking and toll collection; pay as, how, and where you
drive; and traffic avoidance.

IoT is at the heart of this transformation. It
connects people, machines, vehicles, parts, and services to
streamline the flow of information, enable real-time
decisions, and enhance automotive experiences. Leading
automotive manufacturers, suppliers, and dealers are
already investing heavily in IoT – and realizing returns that
range from ultra-efficient inventory management to real-
time promotions that grow sales. They are beginning to
transform their business practices and recognize that, in
time, IoT will touch nearly every area of automotive
operations and customer engagement.

The advantages of the IoT vehicle are well-
documented, from improved traffic patterns to increased
fuel economy. But the largest benefit is safety. The
likelihood of collisions will be reduced thanks to DSRC, or
Dedicated Short Range Communication (used in V2V and
V2I). Of course, this will require huge investments in the
public transportation grid. But that also provides a major
opportunity to boost the economy with major public
infrastructure projects and private partnerships.

The IoT auto will also be a boon for the electronics industry.
The development of better and smaller sensors and smarter
real-time data analytics is already underway. The need for
automotive-focused security applications and overrides is in
its infancy and presents major opportunities for companies
willing to dive in. In the consumer electronics market, the
entertainment and infotainment industries may also see a
boost. (Less time focused on driving means more time open
to watching movies or reading eBooks on the highway).
Lastly, we see opportunities in the job market itself. A new
generation of vehicles will require new forms of education
and training for the millions of technicians who will be
needed to maintain our future national vehicle fleet.

VIII. IMPLEMENTATION

As long as there's a (cross) compiler, there's really no
difference between an emulator, a virtual machine, an
operating system or a native compiler. The microcontroller
simply does what it is meant to do - execute machine code.
To get a UNIX clone (such as an ARM build of
GNU/Linux) running with in the context of an emulator on
the chip is quite a herculean task. To start with we will have
to have all the Low Level Drivers of the microcontroller
which we will be using to do this port. Once we have LLds
next step is to develop Hardware Abstraction Layer and An
Emulator. once you have all the layers of code compile
them and flash them on to the microcontroller and invoke

Sneha.M.L et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1461-1465

www.ijcsit.com 1464

the bin file of the kernel placed on the SD card and
bootstrap it. After the boot process is complete you will
have your Linux shell working on your microcontroller.

IX. RESULT

In this project we have used HyperTerminal (Terminal
emulator) is used to interact with microcontroller and to
monitor results. The figure 5 shows the Hardware
abstraction Layer shell running on our microcontroller and
figure 6 shows the Hardware Linux shell running on our
microcontroller.

Fig .5 HAL shell running on microcontroller

Fig .6 Linux shell running on microcontroller

X. CONCLUSION

In this white paper we have answered all programmers
common question “can GNU/Linux run on a
microcontroller?” Not only that we have also explained
how a microcontroller can be emulated to work as a
microprocessor. This article also proves that any host
system can be made to work as any other target system with
the power of emulation. This also proves that program can
be made hardware agnostic by having different layers of
software atop of our hardware.

ACKNOWLEDGMENT

We would like to thank almighty god and our
parents, for their constant support. We would also like to
thank our friends who providing a healthy environment
which helped us complete this work. We also thank the
Principal and the Management of NIE for extending support
to this work.

REFERENCES
[1] “Programming Mirzar32 Board in Lisp Programming Language” by

Raman Gopalan for Electronics For You, April 2016
[2] "Definition of Connected Car – What is the connected car?

Defined". AUTO Connected Car. South Pasadena, California,
United States: A propose. Retrieved 22 July 2014.

[3] Open Automotive Alliance". Open Automotive Alliance. Retrieved
22 July 2014

[4] “Vision and challenges for realising the Internet of Things” edited
by Harald Sundmaeker, Patrick Guillemin, Peter Friess and Sylvie
Wolfed.

[5] “The Internet of Things: A survey” by Luigi Atzori a, Antonio Iera
and Giacomo Morabito for ScienceDirect.

Sneha.M.L et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1461-1465

www.ijcsit.com 1465

